
Temporal Neural Cellular Automata: Application
to modeling of contrast enhancement in breast

MRI

Daniel M. Lang1,2, Richard Osuala3, Veronika Spieker1,2, Karim Lekadir3,4,
Rickmer Braren5,6, and Julia A. Schnabel1,2,7

1 Institute of Machine Learning in Biomedical Imaging, Helmholtz Munich, Germany
lang@helmholtz-munich.de

2 School of Computation, Information and Technology, Technical University of
Munich, Germany

3 Departament de Matematiques i Informatica, Universitat de Barcelona, Spain
4 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

5 Institute for Diagnostic and Interventional Radiology, School of Medicine & Health,
Klinkum Rechts der Isar, Technical University of Munich, Germany

6 German Cancer Consortium (DKTK), Partner Site Munich, Germany
7 School of Biomedical Engineering & Imaging Sciences, King’s College London, UK

Abstract. Synthetic contrast enhancement offers fast image acquisition
and eliminates the need for intravenous injection of contrast agent. This
is particularly beneficial for breast imaging, where long acquisition times
and high cost are significantly limiting the applicability of magnetic res-
onance imaging (MRI) as a widespread screening modality. Recent stud-
ies have demonstrated the feasibility of synthetic contrast generation.
However, current state-of-the-art (SOTA) methods lack sufficient mea-
sures for consistent temporal evolution. Neural cellular automata (NCA)
offer a robust and lightweight architecture to model evolving patterns
between neighboring cells or pixels. In this work we introduce TeNCA
(Temporal Neural Cellular Automata), which extends and further re-
fines NCAs to effectively model temporally sparse, non-uniformly sam-
pled imaging data. To achieve this, we advance the training strategy by
enabling adaptive loss computation and define the iterative nature of
the method to resemble a physical progression in time. This conditions
the model to learn a physiologically plausible evolution of contrast en-
hancement. We rigorously train and test TeNCA on a diverse breast MRI
dataset and demonstrate its effectiveness, surpassing the performance of
existing methods in generation of images that align with ground truth
post-contrast sequences. Code: https://github.com/LangDaniel/TeNCA
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1 Introduction

Dynamic contrast-enhanced - magnetic resonance imaging (DCE-MRI) is the
most sensitive modality for breast cancer detection, outperforming conventional

https://github.com/LangDaniel/TeNCA
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imaging with mammography, digital breast tomosynthesis and ultrasound [12].
The method images changes in tissue enhancement over time. To achieve this,
multiple MRI sequences are acquired after contrast injection. While currently
reserved for supplemental screening of high-risk patients, a growing body of
evidence suggests that patients with lower risk profiles may also benefit from its
use. However, wide adoption of DCE-MRI for breast cancer screening is hindered
by its high costs and lengthy acquisition times [4]. To address this limitations,
Kuhl et al. [11] developed an abbreviated imaging protocol that uses only one
post-contrast image. Nevertheless, this approach comes at the cost of losing
time-resolved contrast kinetics, which enhance specificity and enable malignancy
assessment. Ideally, a breast MRI protocol should strike a balance between high
spatial resolution and high temporal resolution, allowing for optimal diagnostic
performance [12].

Recent studies have shown the potential of deep learning models to predict
contrast uptake from unenhanced acquisitions. For example, Schreiter et al. [25]
developed a U-Net architecture that predicts T1-weighted subtraction images
from T1, T2, and diffusion weighted imaging (DWI). Additionally, Osuala et al.
[19] explored the use of latent diffusion models (LDMs) to model contrast uptake
on T1-weighted breast images, conditioning on acquisition time and supplemen-
tary imaging information using a ControlNet [27]. Furthermore, the capabilities
of generative adversarial networks (GANs) have also been investigated [18,10,17].

Neural cellular automata (NCA) are a class of models that simulate the
communication and progression of cells living on a grid, which can be effec-
tively represented by convolutional neural networks (CNNs) [6]. The growing
NCA variant [16] is designed to iteratively model the evolution of complex pat-
terns. In the medical domain, Manzanera et al. [14] extended the architecture
to simulate nodule growth in lung cancer computed tomography (CT). Addi-
tionally, Kalkhof et al. [8,9] developed NCAs for segmentation, while Deutges et
al. [2] extended the architecture to classification tasks. Furthermore, NCAs have
also been merged with diffusion models [3,15] and applied for image registra-
tion [21]. The ability of NCA to model temporal textures has been investigated
by Pajouheshgar et al. [20]. They developed a model for dynamic texture syn-
thesis on real-world temporally-dense video data. Moreover, Richardson et al.
[22] designed a nested NCA architecture to learn spatio-temporal patterns on
artificially generated datasets featuring a uniform temporal spacing.

Typically, MRI scan times are within the order of several minutes, with the
exact duration dependent on the specific acquisition protocol. However, the
uptake and washout of contrast agent is a dynamic process that evolves con-
tinuously over time. Therefore, a model designed to predict dynamic contrast
enhancement must be capable of learning from temporally sparse data while
ensuring a continuous evolution over time. NCAs are inherently suited for this
task due to their iterative nature, which can be leveraged to guarantee a con-
tinuous progression. However, this feature of NCA is usually not made use of,
with the iterative process being viewed solely as a means to reach a static output
state after a fixed number of update steps. In this work, we introduce TeNCA
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(Temporal Neural Cellular Automata), a novel approach to model temporally
consistent evolution over time. TeNCA extends the capabilities of NCAs to effec-
tively learn from temporally sparse, non-uniformly sampled imaging data and
capitalize on their iterative nature. To achieve this, we advance the training
strategy of our model to be able to adaptively condition intermediate states.
Furthermore, we define the update step to reflect physical progression of time,
enabling the model to simulate the continuous process of contrast enhancement.
We evaluate the performance of TeNCA and compare it to two reference meth-
ods, surpassing current SOTA performance in generation of images that align
with ground truth DCE-MRI. Furthermore, we prove superior performance of
TeNCA with respect to temporal stability and sequential consistency. Our key
contributions are as follows:

– We introduce TeNCA, a novel neural cellular automata based approach en-
abling training on temporally sparse, non-uniformly sampled imaging data.

– We adapt TeNCA to model contrast enhancement on breast MRI and rig-
orously train and test it on a diverse dataset, involving different subcohorts
and imaging protocols, with a large variety of acquisition times.

– We evaluate TeNCA in comparison to two reference methods, improving
current SOTA performance in terms of image generation that stays close
to ground truth post-contrast acquisitions and prove TeNCAs superiority in
learning temporal patterns.

2 Background: Neural Cellular Automata

NCAs are designed to learn update rules that allow transformation of an initial
state S0 into a final state Sfin, with the updates being iterative applied via [20]

St+1 = F (St) = St +
∂S

∂t
∆t. (1)

The transition function F consists of a perception and a update part, that can
be represented utilizing a neural network [6]. The global state S ∈ Rh×w×d

represents a grid of cells sij ∈ Rd that can communicate with each other.
During the perception stage, each cell gathers information from its neigh-

bors to form the perception vector zij ∈ Rn·d, where n represents the number
of possible communication pathways. Typically, two pathways between nearest
neighbors are employed, which can be modeled using learnable convolutional
kernels [2]. This is combined with an identity kernel representing the cell’s own
state, resulting in n = 3. However, techniques that enable global communication
can also be applied [8,20]. The global state S is divided into two parts: visible and
hidden. The visible part Svis = {sijk : i ∈ {1, ..., h}, j ∈ {1, ..., w}, k ∈ {1, ..., c}}
is initialized with a seed or image of dimensionality Rh×w×c and the remaining
hidden part stores information about cell communication. The update part of
the transition function F can be modeled by a multilayer perceptron (MLP) via

∂sij
∂t

= MLP (zij)⊙M, (2)
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where M denotes a random binary variable, introduced for stochasticity [20].
During training, the model weights are optimized to ensure that the iterative

updates converge to a visual part of the final state, which reflects a static target
image. Typically, the number of iterative update steps Nsteps is defined as a
hyperparameter that is empirically selected.

3 Method: NCA for temporally sparse representations

Predicting contrast uptake requires a more flexible approach than the standard
NCA training procedure, as it involves modeling a varying amount of post-
contrast sequences at different time points. To address this challenge, we extend
and further develop the NCA architecture to enable sequential loss computation.
Additionally, we define the update stage to reflect a physical progression in time,
allowing us to adaptively condition the model precisely at time points for which
a ground truth post-contrast sequence is available, see Figure 1.

Let {x, {{y1, ..., yk}, {t1, ..., tk}}} denote a pair of a pre-contrast image x
and its corresponding post-contrast sequences yi acquired at times ti after con-
trast injection. We initialize the visible part of the state S with the pre-contrast
image, i.e. Svis

0 = x ∈ Rh×w×1, while the hidden part is zero initialized. Our
goal is to have Svis gradually transition from a pre-contrast to a post-contrast
state, while ensuring that intermediate states also take physiologically meaning-
ful post-contrast states. To achieve this, we define the update step to reflect a
progression in time ∆t, and require Svis to approximate yi after ti/∆t updates.
Specifically, for all update steps {ti/∆t : i ∈ {1, . . . , k}} we compute the loss
between ŷi = Svis

ti/∆t and yi. The overall loss is then given by

L =

m∑
j=0

kj∑
i=0

Limg

(
yji , S

vis
ti/∆t

)
=

m∑
j=0

kj∑
i=0

Limg

(
yji , ŷ

j
i

)
, (3)

with kj depicting the number of post-contrast sequences for patient j, and m
the number of cases involved, i.e. given in the (mini)batch. The loss Limg depicts
a standard pixel/image based loss, e.g. mean squared error (MSE). A detailed
training strategy of TeNCA is given in Algorithm 1.

By training the model in this manner, we constrain it to learn a smooth and
continuous transition of S0

vis = x into a final state SN
vis, while being conditioned to

physiologically meaningful intermediate states as reflected in the training data.

4 Experiments and Results

Unlike previous studies [17,19,25], we train and evaluate our model on a diverse
dataset comprising images from multiple subcohorts, each with distinct imaging
protocols. This diversity presents a unique challenge, as the number and timing
of DCE acquisitions can vary substantially between protocols. For instance, one
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Algorithm 1: Training strategy for TeNCA.
Input: Dtrain: training set with pairs {x, {y1, ..., yk}, {t1, ..., tk}}, F : NCA transition

function, S: NCA state, Nsteps : update steps, ∆t : time-delta, m: batch size
1 for number of training epochs do
2 for {xj , {{yj

1, . . . , y
j
kj
}, {tj1, ..., t

j
kj
}}}mj=0 in Dtrain do

3 for j in 0, . . . ,m do
4 Svis

0 ← xj

5 t← 0
6 for l in 0, . . . , Nsteps do
7 t← t + ∆t
8 Sl+1 ← F(Sl)
9 for i in 1, . . . , kj do

10 if t equals tji then
11 ŷj

i ← Svis
l+1

12 L ←
∑m

j=0

∑kj
i=0Limg

(
yj
i , ŷ

j
i

)
13 perform back-propagation and optimize weights of F

Fig. 1. Overview of TeNCA. For each step, our NCA backbone transitions the images
gradually to reflect the next time point. During Training, intermediate states are con-
ditioned at all time points with a given ground truth DCE-MRI available.

clinical center might capture only two post-contrast sequences shortly after in-
jection, whereas another may employ five sequences to also illustrate contrast
washout. To provide a comprehensive comparison, we test our approach against
two SOTA methods: a U-Net model and a latent diffusion model.

4.1 Dataset

For all experiments, we utilize the public MAMA-MIA dataset [5] (License CC
BY 3.0 & CC BY-NC 4.0 ), which comprises T1-weighted fat-saturated breast
DCE-MRI scans. We adhere to the provided training-test split, which consists
of 300 test cases. To augment the training cohort, we incorporate additional
T1-weighted fat-saturated cases from the Duke-Breast-Cancer-MRI dataset [24]
(License CC BY-NC 4.0) that are not part of MAMA-MIA. From this combined
dataset, we randomly select 200 patients for validation, resulting in a training
set of 1604 cases. For analysis, we consider a maximum of five post-contrast
sequences and a acquisition time of up to 1024 seconds. All images are resampled
to a uniform voxel spacing of 1mm and intensity values are linearly rescaled

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
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between zero and one based on the 0.02 and 99.98 percentiles of the respective
pre-contrast image. Additionally, images are cropped to patches of size 168×168
following the basic procedure established by Osuala et al. [19].

4.2 Implementation

U-Net For the implementation of the U-Net, we follow the structure of MCO-
Net [25], which models sequential post-contrast sequences through different
output channels. The method depicts a smaller variant of the standard U-Net
architecture [23]. However, since MCO-Net was trained on five input sequences,
including T2 and diffusion weighted imaging, we perform an empirical grid
search to optimize the hyperparameter. We find that for our case the standard
U-Net structure, combined with batch normalization layers, trained on mean
absolute error (MAE), yields the best results. The code for our U-Net model is
available for reproducibility1.

CC-Net We employ the latent diffusion model-based architecture proposed
by Osuala et al. [19] and adapt it to our dataset. Specifically, we leverage
the CC-NetAny model and retrain both the latent diffusion model and the
ControlNet architecture for 100 epochs with the given hyperparameter settings.
For encoding and decoding, we utilize the 2-1-base stable diffusion autoencoder.

TeNCA In the perception state, TeNCA utilizes two learnable kernels of size
3× 3 for communication between neighboring cells in combination with a kernel
retrieving the cells own state. We pad the input images, featuring one color
channel, to a channel size of 24, and set the temporal resolution to ∆t = 8
seconds. For the update stage, a two layered MLP exhibiting a hidden size of
128 with the first layer using ReLU activation is employed. We train TeNCA with
MSE as the image loss and perform empirical hyperparameter optimization. We
make the code for TeNCA available for reproducibility1.

4.3 Evaluation Metrics

Image evaluation metrics include learned perceptual image patch similarity
(LPIPS) [28], the structural similarity index measure (SSIM) and multi-scale
SSIM (MS-SSIM) [26], as well as peak signal-to-noise ratio (PSNR). Distribu-
tion measures involve Fréchet inception distance (FID) [7] and Fréchet radiomics
distance (FRD) [19]. As models were trained to optimize different losses, i.e.
MSE and MAE, and are, therefore, likely biased towards their respective train-
ing objective, we do not include those metrics in our analysis. As a lower/upper
bound, we compute the difference between each post-contrast acquisition and its
respective pre-contrast image, the result of which we denote as baseline.

1 https://github.com/LangDaniel/TeNCA

https://github.com/LangDaniel/TeNCA
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4.4 Results

The overall model performance on the test set, calculated as the mean across all
post-contrast phases, is presented in Table 1. Qualitative results are visualized in
Figure 2. Notably, TeNCA achieves the highest overall performance, surpassing

Table 1. Comparison of Image metrics and distribution measures on the test set,
alongside model parameter counts. Notably, TeNCA excels in image metrics while
maintaining competitive distribution measure values. CC-Net achieves higher values
for distribution measures, but its image metric performance suggest a tendency to
hallucinate image parts. TeNCA requires significantly less parameters.

Method LPIPS↓ SSIM↑ MS-SSIM↑ PSNR [dB]↑ FID↓ FRD↓ param.↓

baseline 0.13 0.86 0.88 29.24 30.20 154.20 -
U-Net 0.13 0.88 0.92 31.93 32.00 50.96 31 · 106
CC-Net 0.14 0.80 0.80 30.19 21.28 20.00 12 · 108

TeNCA(ours) 0.12 0.89 0.93 32.26 27.83 48.68 13 · 103

all other methods in terms of image-level metrics. However, CC-Net outperforms
TeNCA in distribution similarity metrics, specifically FID and FRD, which assess
the similarity between the set of generated images and the ground truth DCE
dataset. This suggest that CC-Net is capable of producing more realistic-looking
images. Nevertheless, CC-Net’s performance in image-level metrics reveals a sig-
nificant limitation: at pixel level, the generated images deviate substantially from
the ground truth post-contrast sequences, as indicated by LPIPS and (MS-)SSIM
values below the baseline. This implies that CC-Net is prone to hallucinating
parts in the images, a known issue with diffusion models [1]. An example of this
can be seen in the first row of Figure 2, CC-Net generates a realistic-looking
example that, however, fails to reflect the actual post-contrast sequence. In con-
trast, the U-Net architecture performs the worst, with image metrics lower than
TeNCA and the lowest results for distribution measures. The qualitative exam-
ples in Figure 2 suggest a segmentation-like behavior, which is consistent with
the task for which the U-Net architecture was initially designed [23]. As depicted
in Table 1, TeNCA requires significantly less parameters than other methods.

Temporal stability Figure 3 illustrates the image metric performance calcu-
lated individually for each post-contrast phase. TeNCA consistently features su-
perior temporal ability. Other methods exhibit a decline in performance as time
progresses/for later phases, with the U-Net mostly achieving its best results for
the first phase. In contrast, TeNCA achieves stable temporal performance with
MS-SSIM even improving for later phases.
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Fig. 2. Example test set results, involving a (predicted) post-contrast image and a
subtraction between the pre- and the post-contrast image, highlighting contrast uptake.
TeNCA successfully models detailed structures, outperforming the U-Net. Additionally,
it avoids hallucination of artifacts, a limitation evident in the first example of CC-Net.

Fig. 3. Mean image metric values for the test set across all post-contrast phases.
TeNCA maintains consistent performance throughout all phases, while other meth-
ods exhibit a noticeable decline in later phases.

Sequential consistency Example videos illustrating the temporal evolution
of contrast enhancement are provided online2. Notably, TeNCA exhibits the
best sequential consistency, characterized by a continuous evolution. In contrast,
CC-Net’s output changes significantly between consecutive frames, highlighting
the inevitable need for temporal stability measures to be taken into account.
Additionally, the segmentation-like behavior of the U-Net model is evident, with
its output remaining relatively static.

5 Discussion and Conclusion

This paper introduces TeNCA, a novel approach that enhances the training
procedure of neural cellular automata to effectively model temporally sparse,
non-uniformly sampled imaging data. We train TeNCA to predict contrast en-
hancement on breast MRI and comprehensively evaluate its performance on a

2 https://langdaniel.github.io/TeNCA/

https://langdaniel.github.io/TeNCA/
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challenging dataset including diverse sub-cohorts with varying imaging proto-
cols and acquisition times. Our results demonstrate the superiority of TeNCA
over two existing methods, surpassing current SOTA performance in generation
of images that align with ground truth post-contrast sequences. Furthermore,
we prove TeNCA’s strong temporal capabilities, which performs consistent over
all post-contrast phases and evolves its output continuously over time. Notably,
TeNCA is less susceptible to hallucinations, an issue with diffusion based con-
trast prediction, which poses a significant concern in the medical domain where
algorithm reliability is paramount for clinical applicability [13]. Additionally,
TeNCA requires substantially fewer parameters than other methods, making in
easily deployable, even in resource-constrained settings.

The strong performance of TeNCA motivates us to further enhance its ca-
pabilities to 3D modeling and evaluate its clinical applicability in future work.
Its flexible training strategy also opens new opportunities for application, e.g. in
cine MRI or 4D CT.
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